Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1142622, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593544

RESUMO

Background: Antimicrobial resistance (AMR) is an increasingly severe threat to global public health that requires action across different sectors. Selection of appropriate antimicrobials is an urgent challenge due to the emergence of drug resistance. In 2017, Kenya developed an AMR policy and National Action Plan to drive prevention and containment of AMR. A priority activity under AMR surveillance strategic objective was to develop a national AMR training curriculum for in-service healthcare workers. In this paper we discuss the development process, gains achieved through implementation across the country and lessons learned. Methods: An initial stakeholders' forum was convened to brainstorm on the process for developing the curriculum and some issues deliberated upon include the design approach, development roadmap, curriculum outline and scope, delivery, and evaluation methodologies. A dedicated team of subject matter experts (SMEs), drawn from the project and government ministries, compiled the initial draft of the curriculum and later the training materials. A series of other stakeholders' meetings were convened to review these materials. The National Antimicrobial Stewardship Interagency Committee (NASIC) of the MOH in Kenya identified a team of experts from academia, research, and government to work with the SMEs in reviewing and providing valuable inputs to the curriculum. Additionally, principles of adult learning and a One Health approach for development were considered as AMR has drivers and impacts across sectors. A validation workshop was held to finalize the documents with a formal launch conducted during the World Antibiotics Awareness Week of 2020. Results: A multisectoral AMR surveillance training curriculum and facilitator and trainee manuals were developed and endorsed by MOH and Ministry of Agriculture, Livestock, Fisheries and Cooperatives within one year. Over 500 healthcare workers in 19 counties were trained, with overwhelming adoption by other stakeholders in Kenya and beyond. Conclusion: This curriculum was developed to standardize training for AMR detection and surveillance. The central role played by the MOH ensured expeditious development and roll-out of this curriculum. The in-service curriculum, now available on an e-learning platform, provides a ready opportunity to build capacity of healthcare professionals. Additional resources are needed to standardize and scale these efforts to reach all healthcare workers.

3.
BMC Vet Res ; 17(1): 342, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717610

RESUMO

BACKGROUND: We implemented a longitudinal study to determine the incidence of Brucella infection in cattle, camels, sheep and goats that were being raised in a pastoral area in Isiolo County, Kenya. An initial cross-sectional survey was implemented to identify unexposed animals for follow up; that survey used 141 camels, 216 cattle, 208 sheep and 161 goats. Sera from these animals were screened for Brucella spp. using the Rose Bengal Plate test (RBPT), a modified RBPT, and an indirect multispecies Enzyme Linked Immunosorbent Assay (iELISA). Results of RBPT and iELISA were interpreted in parallel to determine seroprevalence. A total of 30 camels, 31 cattle, 22 sheep and 32 goats that were seronegative by all the above tests were recruited in a subsequent longitudinal study for follow up. These animals were followed for 12 months and tested for anti-Brucella antibodies using iELISA. Seroconversion among these animals was defined by a positive iELISA test following a negative iELISA result in the previous sampling period. All seropositive samples were further tested using real-time PCR-based assays to identify Brucella species. These analyses targeted the alkB and BMEI1162 genes for B. abortus, and B. melitensis, respectively. Data from the longitudinal study were analysed using Cox proportional hazards model that accounted for within-herds clustering of Brucella infections. RESULTS: The overall incidence rate of Brucella infection was 0.024 (95% confidence interval [CI]: 0.014-0.037) cases per animal-months at risk. Brucella infection incidence in camels, cattle, goats and sheep were 0.053 (0.022-0.104), 0.028 (0.010-0.061), 0.013 (0.003-0.036) and 0.006 (0.0002-0.034) cases per animal-month at risk, respectively. The incidence rate of Brucella infection among females and males were 0.020 (0.009-0.036) and 0.016 (0.004-0.091), respectively. Real-time PCR analyses showed that B. abortus was more prevalent than B. melitensis in the area. Results of multivariable Cox regression analysis identified species (camels and cattle) as an important predictor of Brucella spp. exposure in animals. CONCLUSIONS: This study estimated an overall brucellosis incidence of 0.024 cases per animal-months at risk with camels and cattle having higher incidence than sheep and goats. These results will inform surveillance studies in the area.


Assuntos
Brucella/imunologia , Brucelose/veterinária , Camelus/microbiologia , Doenças dos Bovinos/epidemiologia , Doenças das Cabras/epidemiologia , Doenças dos Ovinos/epidemiologia , Animais , Brucelose/epidemiologia , Brucelose/microbiologia , Bovinos , Doenças dos Bovinos/microbiologia , Estudos Transversais , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Doenças das Cabras/microbiologia , Cabras , Incidência , Quênia/epidemiologia , Gado , Estudos Longitudinais , Masculino , Fatores de Risco , Estudos Soroepidemiológicos , Ovinos , Doenças dos Ovinos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...